
NORM Developer’s Guide

Background
This document describes an application programming interface (API) for the Nack-
Oriented Reliable Multicast (NORM) protocol implementation developed by the United
States Naval Research Laboratory (NRL). The NORM protocol provides reliable data
transport for applications wishing to use Internet Protocol (IP) Multicast services for
group data delivery. NORM can also support unicast (point-to-point) data
communication and may be used for such when deemed appropriate.

Overview
The NORM API has been designed to provide simple, straightforward access to and
control of NORM protocol state and functions. Functions are provided to create and
initialize instances of the NORM API and associated transport sessions (NormSessions).
Subsequently, NORM data transmission (NormSender) operation can be activated and the
application can queue various types of data (NormObjects) for reliable transport.
Additionally or alternatively, NORM reception (NormReceiver) operation can also be
enabled on a per-session basis and the protocol implementation alerts the application of
receive events.
By default, the NORM API will create an operating system thread in which the NORM
protocol engine runs. This allows user application code and the underlying NORM code
to execute somewhat independently of one another. The NORM protocol thread notifies
the application of various protocol events through a thread-safe event dispatching
mechanism and API calls are provided to allow the application to control NORM
operation. (Note: API mechanisms for lower-level, non-threaded control and execution
of the NORM protocol engine will also be provided in the future.)
The NORM API operation can be summarized by the following categories of functions:

1) API Initialization
2) Session Creation and Control
3) Data Transmission
4) Data Reception
5) Event Notification

Note the order of these categories roughly reflects the order of function calls required to
use NORM in an application. The first step is to create and initialize, as needed, at least
one instance of the NORM API. Then one or more NORM transport sessions (where a
“session” corresponds to data exchanges on a given multicast group and host port
number) may be created and controlled.
(TBD - Address each of the areas, providing links to appropriate portions of the API
Reference as example operations and function calls are cited.)

API Reference

API Variable Types and Constants
The NORM API defines and enumerates a number of supporting variable types and
values which are used in different function calls. The variable types are described here.

NormInstanceHandle
The NormInstanceHandle type is returned when a NORM API instance is created
(see NormCreateInstance()). This handle can be subsequently used for API calls
which require reference to a specific NORM API instance. By default, each NORM API
instance instantiated creates an operating system thread for protocol operation. Note that
multiple NORM transport sessions may be created for a single API instance. In general,
it is expected that applications will create a single NORM API instance, but some multi-
threaded application designs may prefer multiple corresponding NORM API instances.
The value NORM_INSTANCE_INVALID corresponds to an invalid API instance.

NormSessionHandle
The NormSessionHandle type is used to reference NORM transport sessions which
have been created using the NormCreateSession() API call. Multiple
NormSessionHandles may be associated with a given NormInstanceHandle.
The special value NORM_SESSION_INVALID is used to refer to invalid session
references.

NormNodeHandle
The NormNodeHandle type is used to reference state kept by the NORM
implementation with respect to other participants within a NormSession. Most typically,
the NormNodeHandle is used by receiver applications to dereference information
about remote senders of data as needed. The special value NORM_NODE_INVALID
corresponds to an invalid reference.

NormNodeId
The NormNodeId type corresponds to a 32-bit numeric value which should uniquely
identify a participant (node) in a given NormSession. The NormNodeGetId()
function can be used to retrieve this value given a valid NormNodeHandle. The
special value NORM_NODE_NONE corresponds to an invalid (or null) node while the
value NORM_NODE_ANY serves as a wildcard value for some functions.

NormObjectHandle
The NormObjectHandle type is used to reference state kept for data transport objects
being actively transmitted or received. The state kept for NORM transport objects is
temporary, but the NORM API provides a function to persistently retain state associated
with a sender or receiver NormObjectHandle (see NormObjectRetain()) if
needed. For sender objects, unless explicitly retained, the NormObjectHandle can be

considered valid until the referenced object is explicitly canceled (see
NormObjectCancel()) or purged from the sender transmission queue (see the event
NORM_TX_OBJECT_PURGED). For receiver objects, these handles should be treated as
valid only until a subsequent call to NormGetNextEvent() unless, again, specifically
retained. The special value NORM_OBJECT_INVALID corresponds to an invalid
transport object reference.

NormObjectType
The NormObjectType type is an enumeration of possible NORM data transport object
types. As previously mentioned, valid types include:

1) NORM_OBJECT_FILE
2) NORM_OBJECT_DATA, and
3) NORM_OBJECT_STREAM

Given a NormObjectHandle, the application may determine an object's type using the
NormObjectGetType() function call. A special NormObjectType value,
NORM_OBJECT_NONE, indicates an invalid object type.

NormObjectTransportId
The NormObjectTransportId type is a 16-bit numerical value assigned to
NormObjects by senders during active transport. These values are temporarily unique
with respect to a given sender within a NormSession and may be "recycled" for use for
future transport objects. NORM sender nodes assign these values in a monotonically
increasing fashion during the course of a session as part of protocol operation. Typically,
the application should not need access to these values, but an API call
NormObjectGetTransportId() is provided to retrieve these values if needed.
(Note this function may be deprecated – it may not be needed at all if the
NormObjectRequeue() function (TBD) is implemented using handles only, but _some_
applications requiring persistence even after a system reboot may need the ability to
recall previous transport ids?)

NormEventType
The NormEventType is an enumeration of NORM API events. "Events" are used by
the NORM API to signal the application of significant NORM protocol operation events
(e.g., receipt of a new receive object, etc). A description of possible NormEventType
values and their interpretation is given below. The function call
NormGetNextEvent() is used to retrieve events from the NORM protocol engine.

NormEvent
The NormEvent type is a structure used to describe significant NORM protocol events.
This structure is defined as follows:
typedef struct
{

NormEventType type;

NormSessionHandle session;
NormNodeHandle node;
NormObjectHandle object;

} NormEvent;

The type field indicates the NormEventType and determines how the other fields
should be interpreted. Note that not all NormEventType fields are relevant to all
events. The session, node, and object fields indicate the applicable
NormSessionHandle, NormNodeHandle, and NormObjectHandle,
respectively, to which the event applies. NORM protocol events are made available to
the application via the NormGetNextEvent() function call.

API Initialization
The first step in using the NORM API is to create an "instance" of the NORM protocol
engine. Note that multiple instances may be created by the application if necessary, but
generally only a single instance is required since multiple NormSessions may be managed
under a single NORM API instance.

NormCreateInstance()

Synopsis
#include <normApi.h>

NormInstanceHandle NormCreateInstance();

Description
This function creates an instance of a NORM protocol engine and is the necessary first
step before any other API functions may be used. With the instantiation of the NORM
protocol engine, an operating system thread is created for protocol execution. The
returned NormInstanceHandle value may be used in subsequent API calls as
needed, such NormCreateSesssion(), etc.

Return Values
A value of NORM_INSTANCE_INVALID is returned upon failure. The function will
only fail if system resources are unavailable to allocate the instance and/or create the
corresponding thread.

NormDestroyInstance()

Synopsis
#include <normApi.h>

void NormDestroyInstance(NormInstanceHandle instance);

Description
The NormDestroyInstance() function immediately shuts down and destroys the
NORM protocol engine instance referred to by the instance parameter. The

application should make no subsequent references to the indicated
NormInstanceHandle or any other API handles or objects associated with it.
However, the application is still responsible for releasing any object handles it has
retained (see NormObjectRetain() and NormObjectRelease()).

Return Values
The function has no return value.

NormSetCacheDirectory()

Synopsis
#include <normApi.h>

bool NormSetCacheDirectory(NormInstanceHandle instance,

 const char* cachePath);

Description
This function sets the directory path used by receivers to cache newly-received
NORM_OBJECT_FILE objects. This function must be called before any file objects may
be received and thus should be called before any calls to NormStartReceiver() are
made. However, note that the cache directory may be changed even during active
NORM reception. In this case, the new specified directory path will be used for
subsequently-received files. Any files received before a directory path change will
remain in the previous cache location. Note that the NormFileRename() function
may be used to rename, and thus potentially move, received files after reception has
begun.
The instance parameter specifies the NORM protocol engine instance (all
NormSessions associated with that instance share the same cache path) and the
cachePath is a string specifying a valid (and writable) directory path. The function
returns true on success and false on failure. The failure conditions are that the
indicated directory does not exist or the process does not have permissions to write.

NormGetNextEvent()

Synopsis
#include <normApi.h>

bool NormGetNextEvent(NormInstanceHandle instance,

 NormEvent* theEvent);

Description
This function retrieves the next available NORM protocol event from the protocol
engine. The instance parameter specifies the applicable NORM protocol engine, and
the theEvent parameter must be a valid pointer to a NormEvent structure capable of

receiving the NORM event information. An enumeration of the types of NORM protocol
events and their intended interpretation is provided later.
Note that this is currently the only blocking call in the NORM API. But non-blocking
operation may be achieved by using the NormGetDescriptor() function to obtain a
descriptor (or HANDLE for WIN32) suitable for asynchronous input/output (I/O)
notification using such system calls as select() (UNIX) or
WaitForMultipleObjects() (WIN32). The descriptor is signaled when an event
is pending.

Return Values
This function generally blocks the thread of application execution until a NormEvent is
available and returns true when a NormEvent is available. However, there are some
cases when the function may return even when no event is pending. In these cases, the
return value is false.
WIN32 Note: A future version of this API will provide an option to have a user-defined
Window message posted when a NORM API event is pending. (Also some event filtering
calls may be provided (e.g. avoid the potentially numerous RX_OBJECT_UPDATED
events if undesired)).

NormGetDescriptor()

Synopsis
#include <normApi.h>

NormDescriptor NormGetDescriptor(NormInstanceHandle instance);

Description
This function is used to retrieve a NormDescriptor (integer file descriptor (UNIX) or
HANDLE (WIN32)) suitable for asynchronous I/O notification to avoid blocking calls to
NormGetNextEvent(). A NormDescriptor is available for each protocol engine
instance. The descriptor (or WIN32 HANDLE) is suitable for use as an input (or
"read") descriptor which is signaled when a NORM protocol event is ready for retrieval
via NormGetNextEvent(). Hence, a call to NormGetNextEvent() will not
block when the descriptor has been signaled. The select() system call (UNIX) (or
WaitForMultipleObjects() (WIN32)) can be used to detect when the returned
NormDescriptor is signaled. For the select() call usage, the NORM descriptor
should be treated as a "read" descriptor.

Return Values
A descriptor is returned which is valid until a call to NormDestroyInstance() is made.
Upon error, a value of NORM_DESCRIPTOR_INVALID is returned.

NORM Session Creation and Control

NormCreateSession()

Synopsis
#include <normApi.h>

NormSessionHandle NormCreateSession(NormInstanceHandle instance,
const char* address,
unsigned short port,
NormNodeId localId);

Description
This function creates a NORM reliable multicast session (NormSession) using the address
parameters provided. While session state is allocated and initialized, active session
participation does not begin until a call is made to NormStartSender() and/or
NormStartReceiver() to join the specified multicast group (if applicable) and start
protocol operation. The following parameters are required in this function call:
instance This must be a valid NormInstanceHandle previously obtained

with a call to NormCreateInstance().
address This points to a string containing an IP address (e.g. dotted decimal

IPv4 address (or IPv6 address) or name resolvable to a valid IP address.
The specified address (along with the port number) determines the
destination of NORM messages sent. For multicast sessions, NORM
senders and receivers must use a common multicast address and port
number. For unicast sessions, the sender and receiver must use a
common port number, but specify the other node's IP address as the
session address (Although note that receiver-only unicast nodes who
are providing unicast feedback to senders will not generate any
messages to the session IP address and the address parameter value
is thus inconsequential for this special case).

port This must be a valid, unused port number corresponding to the desired
NORM session address. See the address parameter description for
more details.

localId The localId parameter specifies the NormNodeId that should be
used to identify the application's presence in the NormSession. All
participant's in a NormSession should use unique localId values.
The application may specify a value of NORM_NODE_ANY or
NORM_NODE_ANY for the localId parameter. In this case, the
NORM implementation will attempt to pick an identifier based on the
host computer's "default" IP address (based on the computer's default
host name). Note there is a chance that this approach may not provide
unique node identifiers in some situations and the NORM protocol does
not currently provide a mechanism to detect or resolve NormNodeId
collisions. Thus, the application should explicitly specify the
localId unless there is a high degree of confidence that the default
IP address will provide a unique identifier.

localId unless there is a high degree of confidence that the default
IP address will provide a unique identifier.

Return Values
The returned NormSessionHandle value is valid until a call to
NormDestroySession() is made. A value of NORM_SESSION_INVALID is
returned upon error.

NormDestroySession()

Synopsis
#include <normApi.h>

void NormDestroySession(NormSessionHandle session);

Description
This function immediately terminates the application's participation in the NormSession
identified by the session parameter and frees any resources used by that session. An
exception to this is that the application is responsible for releasing any explicitly retained
NormObjectHandles (See NormObjectRetain() and
NormObjectRelease()).

Return Values
This function has no returned values.

NormStartSender()

Synopsis
#include <normApi.h>

bool NormStartSender(NormSessionHandle session
 unsigned long bufferSpace
 unsigned short segmentSize,
 unsigned char blockSize,
 unsigned char numParity);

Description
The application's participation as a sender within a specified NormSession begins when
this function is called. This includes protocol activity such as congestion control and/or
group round-trip timing (GRTT) feedback collection and application API activity such as
posting of sender-related NormEvents. The parameters required for this function call
include:
session This must be a valid NormSessionHandle previously obtained

with a call to NormCreateSession().
bufferSpace This specifies the maximum memory space the NORM protocol

engine is allowed to use to buffer any sender calculated FEC segments
and repair state for the session. The optimum bufferSpace value is
function of the network topology bandwidth*delay product and packet
loss characteristics. If the bufferSpace limit is too small, the
protocol may operate less efficiently as the sender is required to
possibly recalculate FEC parity segments and/or provide less efficient
repair transmission strategies (resort to explicit repair) when state is
dropped due to constrained buffering resources. However, note the

engine is allowed to use to buffer any sender calculated FEC segments
and repair state for the session. The optimum bufferSpace value is
function of the network topology bandwidth*delay product and packet
loss characteristics. If the bufferSpace limit is too small, the
protocol may operate less efficiently as the sender is required to
possibly recalculate FEC parity segments and/or provide less efficient
repair transmission strategies (resort to explicit repair) when state is
dropped due to constrained buffering resources. However, note the
protocol will still provide reliable transfer. A large bufferSpace
allocation is safer at the expense of possibly committing more memory
resources.

segmentSize This parameter sets the maximum payload size (in bytes) of NORM
sender messages (not including any NORM message header fields). A
sender's segmentSize value is also used by receivers to limit the
payload content of some feedback messages (e.g. NORM_NACK
message content, etc.) generated in response to that sender. Note
different senders within a NormSession may use different
segmentSize values. Generally, the appropriate segment size to
use is dependent upon the types of networks forming the multicast
topology, but applications may choose different values for other
purposes. Note that application designers MUST account for the size
of NORM message headers when selecting a segmentSize. For
example, the NORM_DATA message header for a
NORM_OBJECT_STREAM with full header extensions is 48 bytes in
length. In this case, the UDP payload size of these messages generated
by NORM would be up to (48 + segmentSize) bytes.

blockSize This parameter sets the number of source symbol segments (packets)
per coding block, for the systematic Reed-Solomon FEC code used in
the current NORM implementation. For traditional systematic block
code "(n,k)" nomenclature, the blockSize value corresponds to (n-
k). NORM logically segments transport object data content into
coding blocks and the blockSize parameter determines the number
of source symbol segments (packets) comprising a single coding block
where each source symbol segment is up to segmentSize bytes in
length.. A given block's parity symbol segments are calculated using
the corresponding set of source symbol segments. The maximum
blockSize allowed by the 8-bit Reed-Solomon codes in NORM is
255, with the further limitation that (blockSize + numParity) ≤
255.

numParity This parameter sets the maximum number of parity symbol segments
(packets) the sender is willing to calculate per FEC coding block. The
parity symbol segments for a block are calculated from the
corresponding blockSize source symbol segments. In the "(n,k)"
nomenclature mention above, the numParity value corresponds to
"k". A property of the Reed-Solomon FEC codes used in the current
NORM implementation is that one parity segment can fill any one
erasure (missing segment (packet)) for a coding block. For a given
blockSize, the maximum numParity value is (255 –
blockSize). However, note that computational complexity
increases significantly with increasing numParity values and
applications may wish to be conservative with respect to numParity
selection, given anticipated network packet loss conditions and group

NORM implementation is that one parity segment can fill any one
erasure (missing segment (packet)) for a coding block. For a given
blockSize, the maximum numParity value is (255 –
blockSize). However, note that computational complexity
increases significantly with increasing numParity values and
applications may wish to be conservative with respect to numParity
selection, given anticipated network packet loss conditions and group
size scalability concerns. Additional FEC code options may be
provided for this NORM implementation in the future with different
parameters, capabilities, trade-offs, and computational requirements.

These parameters are currently immutable with respect to a sender's participation within a
NormSession. Sender operation must be stopped (see NormStopSender()) and
restarted with another call to NormStartSender() if these parameters require
alteration. The API may be extended in the future to support additional flexibility here, if
required. For example, the NORM protocol "sessionId" field may possibly be leveraged
to permit a node to establish multiple virtual presences as a sender within a NormSession
in the future. This would allow the sender to provide multiple concurrent streams of
transport, with possibly different FEC and other parameters if appropriate within the
context of a single NormSession. Again, this extended functionality is not yet supported
in this implementation.

Return Values
A value of true is returned upon success and false upon failure. The reasons failure
may occur include limited system resources or that the network sockets required for
communication failed to open or properly configure. (TBD – Provide a
NormGetError(NormSessionHandle session) function to retrieve a more
specific error indication for this and other functions.)

NormStopSender()

Synopsis
#include <normApi.h>

void NormStopSender(NormSessionHandle session,
 bool graceful = false);

Description
This function terminates the application's participation in a NormSession as a sender. By
default, the sender will immediately exit the session without notifying the receiver set of
its intention. However a "graceful shutdown" option is provided to terminate sender
operation gracefully, notifying the receiver set its pending exit with appropriate protocol
messaging. A NormEvent, NORM_LOCAL_SERVER_CLOSED, is dispatched when the
graceful shutdown process has completed.

(NOTE: The "graceful" parameter is currently not available, and the current behavior
of this API call corresponds to the default behavior of graceful = false). The
functionality described here will soon be supported in the API.

Return Values
This function has no return values.

NormStartReceiver()

Synopsis
#include <normApi.h>

bool NormStartReceiver(NormSessionHandle session,
 unsigned long bufferSpace);

Description
This function initiates the application's participation as a receiver within the NormSession
identified by the session parameter. The receiver will respond with appropriate
protocol messages (unless NormSetSilentReceiver(true) is invoked) and begin
providing the application with receiver-related NormEvent notification. The
bufferSpace parameter is used to set a limit on the amount of bufferSpace
allocated by the receiver per active NormSender within the session. The appropriate
bufferSpace to use is a function of expected network delay*bandwidth product and
packet loss characteristics. A discussion of trade-offs associated with NORM transmit
and receiver buffer space selection is provided later in this document. An insufficient
bufferSpace allocation will result in potentially inefficient protocol operation, even
though reliable operation may be maintained. In some cases of a large delay*bandwidth
product and/or severe packet loss, a small bufferSpace specification (coupled with
the lack of explicit flow control in NORM) may result in the receiver "re-syncing" to the
sender, resulting in "outages" in the reliable transmissions from a sender (this is similar to
the conditions resulting in a TCP connection timeout failure).

Return Values
A value of true is returned upon success and false upon failure. The reasons failure
may occur include limited system resources or that the network sockets required for
session communication failed to open or properly configure.

NormStopReceiver()

Synopsis
#include <normApi.h>

void NormStopReceiver(NormSessionHandle session,
 unsigned int gracePeriod = 0);

Description
This function ends the application's participation as a receiver in the NormSession
specified by the session parameter. By default, all receiver-related protocol activity is
immediately halted and all receiver-related resources are freed (except for those which
have been specifically retained (see NormObjectRetain()). However, and optional
gracePeriod parameter is provided to allow the receiver an opportunity to inform the
group of its intention. This is applicable when the local receiving NormNode has been
designated as an active congestion control representative (i.e. current limiting receiver
(CLR) or potential limiting receiver (PLR)). In this case, a non-zero gracePeriod
value provides an opportunity for the receiver to respond to the applicable sender(s) so
the sender will not expect further congestion control feedback from this receiver. The
gracePeriod integer value is used as a multiplier with the largest sender GRTT to
determine the actual time period for which the receiver will linger in the group to provide
such feedback (i.e. "grace time" = (gracePeriod * GRTT)). During this time, the
receiver will not generate any requests for repair or other protocol actions aside from
response to applicable congestion control probes. When the receiver is removed from the
current list of receivers in the sender congestion control probe messages (or the
gracePeriod expires, whichever comes first), the NORM protocol engine will post a
NORM_LOCAL_RECEIVER_CLOSED event for the applicable session, and related
resources are freed.

Return Values
This function has no return values.

NormSetTransmitRate()

Synopsis
#include <normApi.h>

void NormSetTransmitRate(NormSessionHandle session,
 double rate);

Description
This function sets the transmission rate limit (in bits per second (bps)) used for
NormSender transmissions. For fixed-rate transmission of NORM_OBJECT_FILE or
NORM_OBJECT_DATA, this limit determines the data rate at which NORM protocol
messages and data content. For NORM_OBJECT_STREAM transmissions, this is the
maximum rate allowed for transmission. Note that the application will need to consider
the overhead of NORM protocol headers when determining an appropriate transmission
rate for its purposes. When NORM congestion control is enabled (see
NormSetCongestionControl()), the rate set here will be set, but congestion
control operation may quickly readjust the rate unless disabled.

Return Values
This function has no return values.

NormSetTransmitRateBounds()

Synopsis
#include <normApi.h>

bool NormSetTransmitRateBounds(NormSessionHandle session,
 double rateMin,
 double rateMax);

Description
This function sets the range of sender transmission rates within which the NORM
congestion control algorithm is allowed to operate. By default, the NORM congestion
control algorithm operates with no lower or upper bound on its rate adjustment. This
function allows this to be limited where rateMin corresponds to the minimum
transmission rate (bps) and rateMax corresponds to the maximum transmission rate. One
or both of these parameters may be set to values less than zero to remove one or both
bounds. For example "NormSetTransmitRate(session, -1.0, 64000.0)"
will set an upper limit of 64 kbps for the sender transmission rate with no lower bound.
These rate bounds apply only when congestion control operation is enabled (see
NormSetCongestionControl()). If the current congestion control rate falls
outside of the specified bounds, the sender transmission rate will

Return Values
This function returns true upon success. If (rateMax < rateMin), the rate bounds
will remain unset or unchanged and the function will return false.

NormSetGrttEstimate()

Synopsis
#include <normApi.h>

void NormSetGrttEstimate(NormSessionHandle session,
 double grtt);

Description
This function sets the sender's estimate of group round-trip timing (GRTT). This
function is expected to most typically used to initialize ther sender's GRTT estimate prior
to the call to NormStartSender() when the application has a priori confidence that
the default initial GRTT value of 0.5 second is inappropriate. The sender GRTT estimate
will be updated during normal sender protocol operation after sender startup or if this call
is made while sender operation is active. For experimental purposes (or very special
application needs), this API provides a mechanism to control or disable the sender GRTT
update process (see NormSetGrttProbing()). The grtt value will be limited to the
maximum GRTT as set (see NormSetGrttMax()) or the default maximum of 10
seconds.

The sender GRTT is advertised to the receiver group and is used to scale various NORM
protocol timers. The default NORM GRTT estimation process dynamically measures
round-trip timing to determine an appropriate operating value. An overly-large GRTT
estimate can introduce additional latency into the reliability process (resulting in a larger
virtual delay*bandwidth product for the protocol and potentially requiring more buffer
space to maintain reliability). An overly-small GRTT estimate may introduce the
potential for feedback implosion, limiting the scalability of group size.
Return Values
This function has no return values.

NormGetLocalNodeId()

Synopsis
#include <normApi.h>

NormNodeId NormGetLocalNodeId(NormSessionHandle session);

Description
This function retrieves the NormNodeId value used for the application's participation in
the NormSession identified by the session parameter. The value may have been
explicitly set during the NormCreateSession() call or derived using the host
computer's "default" IP network address.

Return Values
The returned value indicates the NormNode identifier used by the NORM protocol engine
for the application's participation in the specified NormSession.

NormSetMulticastInterface()

Synopsis
#include <normApi.h>

bool NormSetMulticastInterface(NormSessionHandle session,
 const char* interfaceName);

Description
This function specifies which host network interface is used for IP Multicast
transmissions and group membership. This generally should be called before any call to
NormStartSender() or NormStartReceiver() is made. However, if a call to
NormSetMulticastInterface() is made after either of these function calls, the
call will not affect the group membership interface, but only dictate that a possibly
different network interface is used for transmitted NORM messages. Thus, the code:
NormSetMulticastInterface(session, "interface1");
NormStartReceiver(session, ...);
NormSetMulticastInterface(session, "interface2");

will result in NORM group membership (i.e. multicast reception) being managed on
"interface1" while NORM multicast transmissions are made via "interface2".

Return Values
A return value of true indicates success while a return value of false indicates that the
specified interface was valid. This function will always return true if made before calls to
NormStartSender() or NormStartReceiver(). However, those calls may fail
if an invalid interface is specified.

NormSetTTL()

NormSetTOS()

NormSetLoopback()

NormAddAckingNode()

NormRemoveAckingNode()

NormSetWatermark()

NORM Data Transport
The NORM protocol supports transport of three basic types of data content. These
include the types NORM_OBJECT_FILE and NORM_OBJECT_DATA which represent
predetermined, fixed-size application data content. The only differentiation with respect
to these two types is the implicit “hint” to the receiver to use non-volatile (i.e. file
system) storage or memory. This “hint” lets the receiver allocate appropriate storage
space with no other information on the incoming data. The NORM implementation
reads/writes data for the NORM_OBJECT_FILE type directly from/to file storage, while
application memory space is accessed for the NORM_OBJECT_DATA type. The third
data content type, NORM_OBJECT_STREAM, represents unbounded, possibly persistent,
streams of data content. Using this transport paradigm, traditional, byte-oriented
streaming transport service (e.g. similar to that provided by a TCP socket) can be
provided. Additionally, NORM has provisions for application-defined message-oriented
transport where receivers can recover message boundaries without any “handshake” with
the sender. Stream content is buffered by the NORM implementation for
transmission/retransmission and as it is received.
The behavior of data transport operation is largely placed in the control of the NORM
sender(s). NORM senders controls their data transmission rate, forward error correction
(FEC) encoding settings, and parameters controlling feedback from the receiver group.
Multiple senders may operate in a session, each with independent transmission
parameters. NORM receivers learn needed parameter values from fields in NORM
message headers.

NORM transport “objects” (file, data, or stream) are queued for transmission by NORM
senders. NORM senders may also cancel transmission of objects at any time. The
NORM sender controls the transmission rate either manually (fixed transmission rate) or
automatically when NORM congestion control operation is enabled. The NORM
congestion control mechanism is designed to be "friendly" to other data flows on the
network, fairly sharing available bandwidth.
The NRL NORM implementation also supports optional collection of positive
acknowledgment from a subset of the receiver group at application-determined positions
during data transmission. The NORM API allows the application to specify the receiver
subset ("acking node list") and set "watermark" points for which positive
acknowledgement is collected. This process can provide the application with flow
control for a critical set of receivers in the group.
In the case of NORM_OBJECT_FILE and NORM_OBJECT_DATA objects, each NORM
transport
 and NORM receivers are able to identify these objects by sender-assigned
“NormTransportId” values.

NORM Object Functions

NormObjectGetType()

NormObjectGetInfo()

NormObjectGetTransportId()

NormObjectSetNackingMode()

NormObjectCancel()

NormObjectRetain()

NormObjectRelease()

NORM_OBJECT_FILE Transport

NormFileEnqueue()

NormSetCacheDirectory()

NormFileGetName()

NormFileRename()

NORM_OBJECT_DATA Transport

NormDataEnqueue()

NORM_OBJECT_STREAM Transport

NormStreamOpen()

NormStreamClose()

NormStreamSetFlushMode()

NormStreamSetPushMode()

NormStreamWrite()

NormStreamMarkEom()

NormStreamFlush()

NormStreamRead()

NormStreamSeekMsgStart()

